组学教程
转录组
宏基因组
泛基因组
宏转录组
扩增子
表观组
全基因组(WGS)
全基因组关联分析(GWAS)
基因组组装
单细胞
空间转录组
宏病毒组
代谢组
蛋白组
TCGA数据挖掘
上游数据处理
比对软件
组装软件
bam文件
vcf文件
bed文件
生信工具
组学绘图
转录组绘图
微生物绘图
单细胞绘图
资源导航
正在研究
关于我
搜索
登录
Literature
同步
16s
A_needRead
alignment
b_bulkRNA-seq
alternative splicing
assembly
bulkRNA-seq article
review
b_scRNA-seq
cell type annotation
cell-cell communication
immune cell
integration
regulatory information
scRNASeq-method
seurat
trajectory inference
book
Epigenetic
WGBS
lncRNA
machine learning
biology
Dimensionality reduction for biology
metagenomic
assembly
binning
db
Kraken
MetaPhlAn
Pathogen
zh
miRNA
mNGS
other
a_mendely
databases
immune
Macrophages
mutation
ncRNA
reading
report
temp
amplicon
course
metabolomics
method
microorganism
Prognostic Model
project
Quantification
16S
RNA-seq
technique
batch
Cell Type Enrichment
cluster
correlation
DEG
enrichment
regression
Transcriptomics Metabolomics
tools
wes
deep learning
bigdata
Untitled
diet
A comparison of single-cell trajectory inference methods
VMAT5AS9
111
PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated p-values from single-cell RNA sequencing data
DHEBJCAS
111
Reversed graph embedding resolves complex single-cell trajectories
EZNJ6FBX
111
RNA velocity of single cells
JDRD7TCS
111
Single-cell generalized trend model (scGTM): a flexible and interpretable model of gene expression trend along cell pseudotime
9YFFTKVI
111
Single-cell mRNA quantification and differential analysis with Census
2Y48UAJ5
111
Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
F7EH423P
111
Temporal modelling using single-cell transcriptomics
2RNA6N5N
111
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
HP5H7LT8
111
The single-cell transcriptional landscape of mammalian organogenesis
Z4GW3AQX
111